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An improved version of the transfer matrix approach is presented for ultrasonic wave 
interaction in multilayered media. Generalized expressions are obtained for reflection and 
transmission coefficients in either fluid or solid half-space and problems associated with 
numerical stability are solved efficiently. The formulation is applicable to longitudinal and 
shear input waves alike, at arbitrary incidence angles and for any sequence of solid or fluid 
layers. Also, allowance is made for viscoelastic behavior by means of relaxation functions in 
the Laplace transform domain. Finally, the response to arbitrary incident pulse shapes and 
beam profiles is described through application of two-dimensional numerical Laplace 
inversion. 

PACS numbers: 43.20. Fn, 43.20.Gp, 43.35.Mr 

INTRODUCTION 

The complete description of acoustic propagation in a 
multilayered system is of great interest in a variety of appli- 
cations such as nondestructive evaluation and acoustic de- 

sign, and there is need for a flexible model that can describe 
the reflection and transmission of ultrasonic waves in these 

media. A systematic approach to this question was presented 
by Thomson 1 and Haskell 2 who suggested a matrix method 
that transfers stress/displacemen t through interfaces. Al- 
though this transfer matrix approach can be used in princi- 
ple, 3 numerical algorithms based on its direct implementa- 
tion are found to become unstable with increasing frequency. 

The problem was first noticed by Dunkin, 4 in connec- 
tion with surface wave excitation, who indicated that work- 
ing with the matrix of subdeterminants leads to a more ro- 
bust algorithm. Since then, other schemes have been 
described, all of them leading to formulations that do not 
really ensure numerical stability. 5-7 More recently, Kundu 
and Mal 8 identified a second precision problem that occurs 
when computing the amplitude of the transmitted signal. 
The authors suggested an alternative that requires the com- 
putation of additional matrices and is therefore quite de- 
manding. Problems with actual implementation of the meth- 
od were not thoroughly examined. Finally, in a very recent 
paper, Cervenka and Challande 9 presented a modified 
transfer matrix formalism oriented so as to include fluid be- 

havior; however the ability of the method to avoid numerical 
instabilities has not been clearly established, particularly in 
the presence of evanescent waves. 

Schmidt and Jensen 1ø proposed a different approach 
whereby local equations for two layer sets are mapped into a 
global system that comprises all unknowns associated with 
boundary conditions. In this case, effectiveness depends on 
the stability of the Gaussian elimination technique used in 
the numerical computation. For n layers with one source- 

receiver combination, the transfer matrix technique is an n- 
operation process that involves multiplication of matrices of 
fixed small dimensions, while the mapping technique is an rt 2 
or even an n 3 operation process, depending on sparseness of 
the global system. The advantage of the Thomson-Haskell 
approach becomes obvious for large n, provided an efficient 
and stable formulation for its numerical implementation is 
available. 

Here we describe a formulation that can handle any se- 
quence of layers with great efficiency and yet overcome 
problems associated with computational instability. We de- 
rive general expressions for the reflection and transmission 
coefficients that relate to solid/fluid half-spaces and longitu- 
dinal/shear waves at arbitrary angles of incidence. Further- 
more, the present formalism incorporates the viscoelastic 
behavior of solid or fluid constituents by use of relaxation 
functions that may involve fractional derivatives. The re- 
sponse to arbitrary pulse shapes and beam profiles is ob- 
tained by numerical Laplace inversion. Finally, our algo- 
rithm is quite robust, which constitutes a definite 
improvement over previous schemes. 

In Sec. I, the field solutions to wave equations are de- 
rived in the transformed domain and special cases of excita- 
tion are considered. We also discuss relaxation functions 

that account for viscoelastic behavior and the use of an inter- 

face layer to handle different types of boundary conditions. 
In Sec. II, the procedure associated with the transfer matrix 
approach is presented and a basic system of equations is ob- 
tained for the reflection and transmission coefficients. There 

follows a short discussion concerning conservation of energy 
and evaluation of stresses and displacements. In Sec. III, we 
examine different computational schemes with respect to 
numerical stability. This leads to the description of a novel 
approach that is particularly robust. In Sec. IV, we discuss 
the details for an efficient implementation of the approach 
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FIG. 1. Geometry of the multilayered system with half-spaces 0 and n d- 1; 
S indicates the position of the acoustic source. 

on a computer. Finally in Sec. V, several examples are given 
which illustrate the general features of the method. 

I. FIELD EQUATIONS 

We consider the laminated structure of Fig. 1 that com- 
prises n parallel layers that are rigidly bonded at their inter- 
faces. Each layer rn of thickness d m • z m -- z m _ 1 and the 
half-spaces noted 0 and n d- 1 on both sides of the system can 
be either a solid or a fluid with isotropic and homogeneous 
properties. The amplitude of the acoustic wave is considered 
small, so as to ensure linearity. The spatial variation of all 
quantities are limited to the x-z plane and internal sources 
are excluded from the analysis. Either a longitudinal wave 
(P wave) or a shear vertical wave ($V wave) is incident at 
the top surface z = 0, forming an angle 0o with the normal to 
the structure. These waves cannot be converted into shear 

horizontal waves (SH wave) and conversely, the propaga- 
tion of SH waves therefore constitutes an independent prob- 
lem, which is not considered here. 

The system of equations that describes the displace- 
ments u and w along x and z, respectively, is written7 

••0, 

(1) 

+ w+ 
C•2U 

where A and tt are the Lam(• coefficients and p is the mass 
density at a given position x,z. The stresses, obtained from 
the constitutive relations, are 

c•u 

= (x +x 0z 
o•w t3u 

azz = tx + 3x 

Crxz =/x + . 

The appropriate boundary conditions for rigidly bonded in- 
terfaces between layers rn and rn d- 1 at z = Zm are given by 

Um(Zm):Um+l(Zm), Wm(Zm)=Wm+l(Zm), 

(3) 

O'zz (Zm) = O•zz q- I (Zm), O•Xz(Z m ) 

With the usual scheme for the decomposition of the dis- 
placement field 4 in terms of the dilatational and shear poten- 
tials 4 and •, 

•}m •m •}m •m 
Um : , W m : t , (4) 

$x $z $z 3x 

one obtains equations that are coupled through boundary 
conditions only 

(5) 

d- •m= 2 Ot 21pm' Csm 

where 2 2 C•,m = (A + 2lz)/p and Csm = lz/p are the phase ve- 
locities for longitudinal and shear waves, respectively. 

In the following, we shall make extensive use of La- 
place-Laplace transforms relating the field functions 
f(x,z,t) and f( •,z,s ) through 

y( ,z,s ) = t x,z,t ) ), 
--l•- I•(ff, Z,S) }, (6a) f(x,z,t) = •t • 

with the definitions 

and where s and •e are complex parameters for the variables t 
andx, respectively. The constants a and 7/in Eq. (6c) denote 
the abscissa in the complex plane located to the right of any 
singularity associated withf(•,z,s). This choice calls for cer- 
tain remarks. The Laplace transform •t is better adapted 
than the Fourier transform •- for the description of tran- 
sient phenomena and viscoelastic behavior. ll'12 According- 
ly, the two-sided Laplace transform ll •x constitutes the 
correct and most appropriate choice for the space variable x, 
as it allows both parameters s and • to be in the complex 
plane. This is also in line with recent theories related to su- 
perposition of inhomogeneous or evanescent plane waves. 13 
Furthermore, the transformation given by Eq. (6c) elimi- 
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nates the aliasing problem associated with discrete Fourier 
inversion. Finally, real physical situations satisfy the math- 
ematical conditions for the existence of a Laplace-Laplace 
transformation on f(x,z,t). 

In the transformed domain, solutions to Eqs. (5) within 
each layer m can be written as 

q•m = Ame a..(z-z.._,) d- Bmcam(Z__Zm_,) 

= + 

-- _ kin(z-- z m_ •) kin(z-- z m_ •) ½% = Cme +Dine 

= + 
with 

h 2 2 2 2, m = S /C•m -- • Im{hm }•0, 

(7) 

(8) 
k 2 2 2 2, m = S /Csm -- • Im{km }>0, 

and where the superscripts d- and -- refer to waves propa- 
gating, respectively, in the positive and negative directions. 
A recurrence relation that permits solving for the unknown 
coefficients in Eqs. (7) will be given in Sec. II, in the frame of 
'the so-called transfer matrix approach. First, we proceed 
with a discussion on the application of the above formalism 
to practical situations. 

As usual for linear systems, the response (output sig- 
nal) can be related to the excitation (input signal) through a 
series of convolutions. 12 In the transformed domain, this is 
expressed through 

f(•,z,s) = H(•',z,s)E 1 (•',s)E 2 (S), (9) 

where H is the transfer function of the multilayered system 
obtained by solving Eqs. (7), E1 is the two-sided Laplace 
transform •x of the input beam profile at the surface z = 0, 
and E2 is the Laplace transform •t of the source history. 

An interesting case is that of beams with Gaussian pro- 
files in order to minimize diffraction effects. Although we 
restrict our analysis to incident P waves, similar expressions 
for $Vwaves can be obtained by replacing %0 with cm. In the 
case of a beam having a width 2b and incidence angle 0o, the 
transformed function El (•,s) is written 

E 1 (•',$) -- B o (x,s)e • dx, (lO) 

where Bo (x,$) is the profile at the surface z = 0 which is 
described by 3' •4 

- (x cos 0o/b)2 e goX Bo (x,s) = e - . (11) 

The quantity b/cos 0o is the beam width at the intercept 
with surface z = 0 and •o = s sin 0o/%0. Here, we note that 
Eq. ( 11 ) is a function of two parameters, b and 0o, which do 
not involve position of the source, and implies that the inci- 
dent beam is focused at the surface z = 0. 

A good approximation to a Gaussian beam is provided 
by a spherical source with complex space coordinates. 14'15 
The analysis presented in Refs. 14 and 15 pertained to Four- 
ier domain (ira) and here, we extend these results to the 

Laplace domain (s). As shown in Fig. 1, a transducer locat- 
ed at S = ( -- Hs tan 0o, -- Hs ), generates a bounded beam 
along Z, which may be described through 

B(X,Z,s) = (Bn/D)e-so/%o, 
(12) 

D = x/X 2 + (Z +/5') 2, 
where B n is a normalizing constant such that B (0,0,s) = 1 at 
the source location S, D is the complex distance to the 
source, and/5' is a complex parameter characterizing beam 
spreading. In the limit ofX/IZ 1, Eqs. (12) represent 
a Gaussian profile TM with a beam width 2b which itself de- 
pends on Z. At position S, the parameter/5' is related to the 
beam width through 

/3 = sb 2/2c•. ( 13 ) 
The profile Bo (x,s) is obtained by expressing the coordi- 
nates X and Z in terms of x and 0o at the surface z = 0 and 
evaluating the factor B n . One finds 

Bo (x,s) = (/3 /D)e - s/c•ø(ø- •) (14a) 
with values of X and Z in D given by 

X = x cos 0o, 

(14b) 
Z = H•/cos 0o + x sin 0o, 

which involves three parameters b, 0o, and Hs. 
Since our approach concerns two-dimensional prob- 

lems only, we chose to consider cylindrical sources, in which 
case, Eq. (14a) is replaced by 

-- s/Cpo(D -- lg) Bo ( x,s ) = •//3 /D e . (15) 

However, we verified that Eq. (14a) and Eq. (15) lead to 
results that are qualitatively identical, so that Eq. (14a) is a 
satisfactory approximation in many situations. By perform- 
ing a numerical Laplace transformation one arrives at 
E1 (•,s) and complete Laplace-Laplace inversion leads to 
the full solution f(x,z,t). 

For a plane wave, one has Bo(x,s)= e -•"• and the 
transformed function is simply El (•,s) = •5 (• -- •o ), •5 be- 
ing the Dirac delta function. After substitution in Eqs. (6), 
the response function is written 

f(x,z,t) -- •,- '{•(•o,Z,S)•2 (s)e -•ø•} (16) 

so that the transfer function needs to be evaluated only at 
• = •o and the full solution is found after single Laplace 
inversion. For the case of a bounded beam with a temporal 
excitation at angular frequency to, the parameter s is re- 
placed by the value ira and the time response is given by 

(17) 

•(x,z,o) = •-'{D(•,z, io)•, (•,io)}, 

f(x,z,t ) = Re•(x,z,w ) eiøt}, 

where Re ( ) means the "real part of." 
A second point concerns absorption of energy. Most of- 

ten, this is accounted for by introducing complex moduli for 
the material properties. A more complete approach for vis- 
coelastic materials relates the stress-strain fields through a 
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series of time derivatives. 16'l? The major drawback here is 
that a large number of terms is required to describe the be- 
havior over a wide range of frequency. To deal with this, it 
was suggested18 that fractional calculus could serve as a ba- 
sis for modeling viscoelasticity. Indeed, the fractional deriv- 
ative operator D r can be written 18 in a form that makes it an 
interesting starting point for the description of memory ef- 
fects: 

_ 1 d f'f(t--r) dr, (18) D r[f(t)] F( 1 -- r) d-• Jo r r 
with 0 < r< 1 and F being the gamma function. While consid- 
ered purely empirical, the model has long proven to be a 
powerful means for describing experimental results. This 
has stimulated recent theoretical efforts 19 seeking some 
physical implications. 

It is found that constitutive relations involving frac- 
tional derivative operators are compatible with the elastic- 
viscoelastic correspondence principle. 16 Hence, in the La- 
place transform domain, one simply replaces A and/t in Eqs. 
(7) by relaxation functions 

2(S) = •(S) -- •0 + Z• I •l S . 
' 1 + I+Z•=• 

(19) 

For a system with one degree of freedom only, Eq. (19) 
becomes 

_ S r _ S r 
= , /z= , (20) 

1 + as r 1 + as r 

which imply fractional derivatives in the time domain. Sub- 
stituting the following parameters: 

2o =2(0), 2• =A(ioo) --/•l/a, 

tto = fi(O), tt• - fi(i• ) = •l/a, 

into Eqs. (20), one arrives at 

2(S) --2 o (St) r 
A • -- Ao 1 -JI- (S7') r 

fi (s) - tto 

(21) 

(ST) r 

1 + (sv) r 
(22) 

where r is an effective relaxation time and r is the fractional 

order. These expressions are identical to the empirical relax- 
ation functions proposed by Cole-Cole in 1941 for the di- 
electric problem. 2ø For a viscoelastic fluid one simply has 16 

/to =•(0)-•0 (23) 

and for the limiting case of classical fluids, with r -- 1, a = 0 
in Eqs. (20), the relaxation functions become 

A = Ko + (•- 2;//3)s, /t -- v/s, (24) 

where Ko is the bulk modulus, and r/and • are the first and 
second coefficients of viscosity. 

Another significant point concerns boundary condi- 
tions. In the above, we assumed rigid bonding between all 
components. Usually one makes this assumption for perfect- 
ly matched interfaces between solids. In the opposite case, 
for the interface between a solid and a classical nonviscous 

fluid, one usually considers slip boundary conditions corre- 
sponding to vanishing shear stress and allowing discontin- 
uity of tangential displacement. While they may lead to use- 
ful results in many cases, these descriptions are approximate. 
Sharp discontinuities are forbidden by thermodynamics so 
that an interface is really an interfacial region or, in the lan- 
guage of hydrodynamics, a boundary layer. Very generally, 
one may model an interface by introducing a very thin lay- 
er, TM rigidly bonded to its neighbors, with effective viscoelas- 
tic properties that can be adjusted to represent boundary 
conditions where bonding ranges from rigid (welded) to slip 
(smooth). 

II. TRANSFER MATRIX FORMALISM 

Now, we describe the basis for the transfer matrix ap- 
proach. For each layer m, two vectors are defined, namely, 
the potential vector Pm and the field vector qm (Ref. 4), 

3Z 
(25) 

(qm (7,)) = (•m •m •zz •.•r• ) T 

where Zm _ 1 <Z<Zm, the superscript Trefers to the transpose 
operator, while { } and ( ) stand for column and row vector, 
respectively. At any position z in the layer, matrix relations 
exist between these vectors, as given by 

(qm (Z) } -- [ rm ] (Pm (Z) ), 

with 

(Pm (Z)) = [ r m ] --l{q m (2)), 
(26) 

5h _•e h [ Tm ] = 2/•.ek y -- 2/•.ek ' (27a) 
2•t/•h -- •/ -- 2•t/•h - •/ m 

1 
[rm] --1= 

]9 m S 2 

where [ 

-- 2• - y/h 1 • /h ' 

x r/k - 2• •/k - 1 
-- 2tt• y/h 1 - • /h ' 
- y/k - 2tt• -• ?k - 1 m 

(27b) 

] m indicates that the matrix is evaluated with the 
properties of layer rn and •'m : Pm S2-- 2[•mff 2. Also, one 
notes the following relation between potential vectors on 
both faces of the layer m' 

(28) 

with 

[Em] -- 

exp( -- hd) 0 0 0 

0 exp( -- kd) 0 0 
0 0 exp (hd) 0 
0 0 0 exp(kd) rn 

(29) 

and d m = Z m • Z m _ 1' 
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Hence, for boundary conditions corresponding to rigid 
bonding at the interface z = Zm between layers m and m q- 1, 
there is the matrix relation 

which can be rewritten as 

(30) 

= ] ] ] 

= [Am ]{qm (zm_,)}. (31) 
The last expression is a recurrence formula that relates the 
fields on top of layer rn to those on top of layer rn q- 1. The 
so-called transfer matrix [A• ] serves to propagate the 
stress-displacement response downward through a layer and 
then across the next interface. Starting with an excitation at 
the top surface z = 0 and noting that q• (0) = qo (0), succes- 
sive application of Eq. (31 ) through media 0 to n q- 1 yields 

(qn+, (Zn)} = [J](qo (0)}, 
where 

[Jl = [•/ln ] [•/ln--1 ]' '' [•/12 ] [•/11 1. (32) 
There are generally two reflected components on the top 

and two transmitted components on the bottom. This sug- 
gests the following definitions for the reflection (r) and 
transmission (t) coefficients in terms of the potentials; 22 

t• = •ff+•/•, t• = ½•+,/•, (33) 
where subscriptsp and s stand for the longitudinal and shear 
components, respectively. For an incident P wave, one ob- 
tains 

=[rn+,]-'[Jl [To] =[GI ' 
(34) 

which constitutes a system of four equations with four unk- 
nowns. For an incident $V wave, the system of equations is 

ts = [Tn+ 1 ]_,[j] [To] re = [G] re . (35) 

Once t e, ts, r e, and rs have been evaluated, the stress- 
displacement transfer function H(•,z,s) in Eq. (9) is ob- 
tained through application of Eqs. (26)-(29) to media 0 and 
n q- 1. Formally, for an incident P wave, one finds for media 
0atz=0 

g= --•(1 + rp ) -- kors, 

•= --ho(1--r e)--•rs, 

•zz = Yo ( 1 + rp ) -- 2tto •ko 
?xx - 2/•o •ho ( 1 - r e ) - Yo 

(36) 

while for media n q- 1 at z = Zn, the result is 

• = -- •te -- kn+ l ts, 
• = hn+ l t e -- •ts, 

(37) 

•zz = Ynq- l tp -- 2[L•nq- l•kn+ Its, 

•'xz = -- 2•n+ l•hn+ l tp - rn+ , q. 
The complete stress-displacement field equations f(x,z,t) 
are obtained from Eqs. (6)-(9). To describe viscoelastic be- 
havior, the coefficients A and/• are replaced by appropriate 
relaxation functions, Eqs. (22). However, when either of 
these media is a fluid, one should use the coefficients in Eqs. 
(24) and for small viscosities r/and •, Eqs. (36) and (37) 
reduce to 

fi • Uo (constant), 

• -- ho(1 -- re), 
(38) 

•zz '-}po$2( 1 + rv ) = -- P, 
•z-•0, 

for media 0, and 

(39) 

• '-} U n q- 1 (constant), 

•--}hn+lt p, 

•zz •Pn + l S2te = -- P, 
•z-•O, 

for media n q- 1, where P is the acoustic pressure. Hence, 
Eqs. (36) and (37) constitute a generalization of previous 
results. 22 For the case of SV waves, one arrives at equations 
similar to Eqs. (36) and (37). 

In practice, one is often interested in the reflection and 
transmission coefficients associated with propagation of en- 
ergy. The time average of the power flow per unit area 
through the surface normal to z is given by 3'1• 

W= _lRe{(rrzz rr•z)liww]* 2 tiwu• 
, (40) 

where * indicates the complex conjugate. For an incident P 
wave, the following relation must hold: 

wi= + Wrs + + W,s + 

where i, r, t refer to incident, reflected, and transmitted ener- 
gy components and W•b• represents absorption losses. In 
absence of absorption, one finds 

Irl-+ Irl-q/qo + Itvl2qvn/q•o q-It•12qsn/q•o: 1, (41) 
where 

q•o = Re(/po h •}, q•o = Re{/po k • }, 

(42) 

qen = Re{iPn + l h n*+ l }, qsn = Re{ipn + l k n*+ l }. 

This yields the following energy coefficients: 
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(43) 

r• --It• 12q•n?q•o, r• --Iq12q•n?q•o, 
and the sum of these coefficients is less than one for a multi- 

layered absorbing media. Similarly, for an incident SV-wave, 
one arrives at 

= 12q•/q•, R• = Irs15 
(•) 

T, = ItPl2qpn/q•, rs = Its l2qsn/q•. 

III. THE PRECISION PROBLEM 

The question of numerical stability arises when evaluat- 
ing the reflection and transmission coefficients, Eqs. (34) 
and ( 35). Here, we study the stability of different computa- 
tional schemes in the case of an incident P wave. We then 

derive a stable formulation applicable to both incident P 
waves and SV waves. 

The most obvious solution to Eqs. (34) is written in the 
form 

•'p = -- G 34/G 34 34/G 34 14 34, •'s • W 13 34, 

(45) 

tp = Gll q- G13t'p q- G141s, 
with 

G ij = Gi k Gj I _ Gi I Gjk kl ' 

t s = G21 q- G23t'p q- G241s, 

(46) 

It has been shown by Dunkin n that elements of [J] contain 
terms such as 

(a 1 -- a2 ) exp (2h m dm ), (47) 

where a l and a 2 are equal. When using numerical tech- 
niques to evaluate [J], the exponential term may cause large 
amplification ofroundoff errors, especially in the presence of 
evanescent waves for large values offdin. In ultrasonic appli- 
cations, fdrn can be of the order of 102 MHz'mm and the 
calculation procedure may well happen to fail in a range that 
is of the most interest. 6 

To assess the effect of roundoff errors on the calculation 

of ultrasonic reflection and transmission coefficients, we 
consider as a simple example the system "water-steel-wa- 
ter." Material properties are given in Table I where ap, as 
refer to attenuation around 20 MHz, respectively, for longi- 
tudinal and shear components. We investigate numerical 
stability in calculating the reflection and transmission coeffi- 

TABLE I. Physical properties of matehals. 

p ,t p a s a• 
Materials (kg/m 3) (GPa) (GPa) (m-•) (m-•) 

Water 1000 2.19 0 0.5 10 6 
Stainless steel 7930 113 75 35 100 

Copper 8900 106 46 15 35 
Nickel 8800 125 77 15 25 

Silver 10500 82 27 20 50 

cients of energy [Eqs. (43) ] as a function of the incidence 
angle 0o for a fixed frequency f and different steel layer 
thicknesses d. We used a PC 486 compatible computer and 
the code was written in FORTRAN with Double Complex ( 16 
bytes) arithmetic; however similar results were obtained 
with a MicroVax 3500 machine. 

In Fig. 2, we show results for reflection and transmis- 
sion coefficients of energy corresponding to Eqs. (45 ). Start- 
ing from the bottom of the figures, the different curves relate 
to increasing values of thickness, d - 0.2, 0.5, 1, 1.5, and 2 
mm, at constant frequency f= 20 MHz. As expected for a 
fluid, Rs is found to be zero everywhere and therefore, we 
omitted the figure associated with this coefficient. At small 
thickness values d < 0.2 mm, Rayleigh behavior is obvious in 
R•, and Ts for 0o > Ocs, Ocs--..' 28.7 ø being the shear critical 
angle. Here, we point out that Rayleigh waves are made to 
occur simply by accounting for attenuation and that there is 
no need for an ad hoc arbitrary 6 real component to •o. For 
d>•0.5 mm, R• and Ts exhibit manifestations for Lamb 
modes at 0 values lying between the longitudinal and shear 
critical angles 0c• •. 14.9 ø and Ocs •28.7 ø. When d>• 1 mm, the 
computational scheme leads to instabilities for R•, Tp, and 
Ts, precluding any kind of analysis for wave behavior. 

The question of stability may be given a more global 
representation by illustrating the results in the form of a 
phase diagram. As a criterion, cases where the sum of the 
energy coefficients [Eqs. (43) ] exceeds unity by more than 
1% were classified unstable. In Fig. 3, we plot the minimum 
value of sin 0o for the onset of instability as a function offd, 
and curves 1, 2, and 3 represent the boundary between stable 
(regions on the left) and unstable (regions on the right) 
solutions. For the scheme corresponding to Eqs. (45) and 
illustrated in Fig. 2, the phase boundary is given by curve 1 in 
Fig. 3. The diagram shows that numerical stability is ensured 
provided fd < 9 MHz-mm, or sin 0o <0.3, coinciding with 
the critical angle where longitudinal waves become evanes- 
cent; otherwise the system may easily become unstable. 

In order to improve stability, Dunkin n introduced the 
so-called delta matrix operator [A ]a made up of all 2 X 2 
subdeterminants of [A]. Formally in this case, one has 

A A =Apq (48) ij rs, 

where the paired indicespq or rs = 12, 13, 14, 23, 24, and 34, 
corresponding to i orj = 1, 2, 3, 4, 5, and 6, respectively. The 
delta operator has the property 

([A ][B])a = [A ]a[B ]a, (49) 

which, when applied to the matrix [G], leads to 

[G] A: [rn+ , ]--A[An]A'''[A 1 ]A[To]A , 
where 

(50a) 

[•Zlrn ]A = [rrn ]A[Ern ]A[ rm ] _A (50b) 

must be obtained analytically. Since the inversion and delta 
operators do not commute, the notation [B ] - a may be am- 
biguous: here we define [B ] - a--= [ [B ] - 1 ] a. With this, the 
reflection and transmission coefficients are written 

(51a) 
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sin !3o 

FIG. 2. Angular spectrum for R e (range 0-1 ), Tp (range 0-0.2) and Ts 
(range 0-0.5) obtained at 20 MHz using Eqs. (45) for the system "water- 
steel-copper." Starting from bottom, d (steel) = 0.2, 0.5, 1, 1.5, and 2 mm. 
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5O 

FIG. 3. Phase diagram illustrating numerical stability in the planefd-sin 0o 
for the system "water-steel-copper." Curves 1, 2, and 3 refer to use of Eqs. 
(45), (51), and (52), respectively. 

tt• = Gll -Jr- G13 t',o -Jr- Gi4 Is, ts: G21 -Jr- G23 t'p -Jr- G24 Is, 
(5lb) 

where [ G] and [ G ] a are computed separately. The matrices 
[Tn +• ] - a and [ To ]a can be evaluated numerically from 
[ T,• ] since exponential terms are not involved. Curve 2 of 
Fig. 3 shows that the scheme corresponding to Eqs. (51) 
provides only minor improvement over Eqs. (45). In fact, 
the approach of Dunkin4 is very effective in suppressing in- 
stabilities of the reflected signal, but much less so for the 
transmitted signal, where instabilities set in that govern the 
boundary line 2. 

Even when rp and rs are stable, expressions (5 lb) for 
the transmission coefficients involve combinations of ele- 

ments from [ G], which lead to instabilities. Since there ap- 
pear to be no instabilities associated with [ G ]a, one should 
try expressing the coefficients as a linear combination of this 
matrix. By adding and substracting terms in Eqs. ( 51 b), one 
arrives at 

•'p = G •3 / G 6•6 •'s = G 6•2 / G A • , 66, 

te = (Gf3Gf2 -G2•3Gf2)/(GllG•6), (52) 
ts = - a6%). 

The corresponding result is shown by curve 3 in Fig. 3. Nu- 
merical instabilities persist in the region where the angle of 
incidence exceeds the shear critical angle and both transmis- 
sion coefficients are zero. Thus, in principle, an algorithm 
based on Eqs. (52) would appear to be satisfactory, provided 
it is used with caution. 

Nonetheless, it would be preferable to eliminate instabi- 
lities completely. Starting from an idea by Kundu and Mal, 8 
one could consider working with matrices [G]-• and 
[ G ] - • in addition to [ G] and [ G ]•. While at first sight, 
this approach is not very attractive, in fact it constitutes the 
basis for our more global and robust formulation. 

Let us express the previous system of Eqs. (34) for an 
incident P wave in the form 
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rv =[G]-' i• =[H] i• (53) 
, 

r• 

Making use of the definition [H ] a = [ G ] - a, we derive the 
following expressions for the transmission coefficients: 

t v = H22/m •,, t•: -- H2•/m • (54a) 
and the reflection coefficients 

r, = m3, t, + H32 t•, r• = m4, rs, •- H42 t s . (54b) 
Substitution of Eqs. (54a) in Eqs. (54b) yields the interest- 
ing result 

(55) 

which involves only discrete components of [H] and [H 
while matrices [ G] and [ G ]a are no longer implicated. 

Similarly for an incident SV wave, the system of equa- 
tions (35) becomes 

= [m] t• (56) 
r• 

and the four coefficients are given by 

•.=H•./Hf.. •=H•./Hf.. 
t, = -- H12/H?1 , ts = m11/mf1. (57) 

It is noteworthy that for either type of wave, only the first 
column of [H ] a is involved and computation of these matri- 
ces is not a difficult task. The matrix [H] can be explicitly 
written as 

[HI = [G] -1 

= [to]-1[al ]_ 1... [a. ]-'if.+ 1 ] 

: [To]-l[ml ]'"[mn][Tn+ I ]. (58) 
The remaining problem lies in the calculation of [B• ]. 
Since [A• ] = [T• ] [E• ] [T• ] -1, one simply has 

[•] = [T•][em]-l[T•] -1 (59) 
and so, matrices [ B• ] and [B• ] • are obtained from [• ] 
and [A• ]• by replacing d• by -- d• into [E• ]. 

Figure 4 shows that the numerical results for Eqs. (5 5 ) 
and (57) are completely stable. We have investigated a num- 
ber of different examples corresponding to values fd up to 
2• MHz.mm with equal success, indicating that our 
scheme is indeed quite robust. 

IV. COMPUTATIONAL PROCEDURE 

In summary, one needs to compute the following matri- 
ces: 

[HI = [To]-lIB 1 ]'"[Bn][Tn_F1 ], 
(60) 

[HI A= [To]-AID1 ]'"[Dn][Tn-t-I ]A, 

I I I I 

-I 

0.0 0.2 0.4 0.6 0.8 

sin (•o 

1.0 

FIG. 4. Same as in Fig. 2 but with results from the stable set of Eqs. (55). 
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where [ B m ] and [ a m ] • [ B m ] a are given in the Appendix. 
The reflection and transmission coefficients are obtained 

from Eqs. (55) or (57), depending on wave input type. We 
note that [H] is required only for calculating transmission 
coefficients in which case only the first column of [H ]a and 
the first two columns of [H] are needed. Hence, for an effi- 

. 

cient implementation, complete matrix-matrix multiplica- 
tions can be replaced by vector-matrix products for [H] a 
(6 elements instead of 36) and half matrix-matrix products 
for [H] (8 elements instead of 16). 

For applications, it is convenient to rearrange terms so 
that expressions for reflection and transmission coefficients 
for either an incident P wave or SV wave are obtained from 

rp = j, /j3 , rs=A/j3, 

tp = g l/J3, t, = g2/J3, 
where 

(61) 

(g) = (ao) [B1 ]'" [a n ] [an+ 1 ], 

O} = [Co] [31 ]'"[in]{Cn+l}, 
(62) 

which are built from right to left. The matrices [a n +1], 
{Cn + 1} are written 

Jan+l] 

(63) 

Cn + 1 } • 

' hk+• •- 
- ps2k 

ps2h 
n+l 

while matrices (ao) and the transpose of [ Co ], for a P wave, 
are given by 

(ao ) = 2poS2(y/k 
'4/•'-•'- - rVh• 

-- ps2/k 
2/• + •r/h• 

[Co ]•= 2/• + •r/n• 
-- ps2/h 

. - 1 + • 2/hk 

- 2M •/• - •)o, 

4/•fr/a 4/•'-•'- + rVha' 
o -- ps2/k 

2r/• 2/•- •r/h• 
- 4M'-/• 2M - •r/h• 

0 psl/h 
2• /k - ( 1 -I- • •/hk ). 

(64) 

(65) 

and for a SV wave by 

(ao ) = 20oS'-(2/• r/h 

- 4/•r/h 
o 

[Co ] •= 4/,•Vh 
- 2y/h 

0 

. - 2•/h 

- 1 -•/h)o, 

4•'-•'- - rVh• 4•'-• • + r•/h• ' 
ps2/k -- psa/k 

2M + fr/ha 2M - 
2M + f r/ha 2M - f r/ha 

ps2/h ps2/h 
-- 1 + • 2/hk - (1 q-• 2/hk ). 

(66) 

(67) 

Here we could have used a compressed form 9-3 for [D m ], 
leading to a fifth-order matrix. However, we found that this 
brought only slight improvement on computational speed, 
while making the code more obscure. 

Nevertheless, some of the elements of matrices [Bin ] 
and [Din ] exhibit exponential growth with nonzero coeffi- 
cients. This problem is easily handled through renormaliza- 
tion by multiplying the matrix elements of both [B m ] and 
[Din ] by l exp(- h mdm )l on each iteration. Finally, the 
case of normal incidence 0o = 0 ø is degenerate with respect 
to both $V waves and $H waves, 9 and to avoid computa- 

I 

tional difficulties, one simply goes to the limit of small values 
for 0o, say of the order of 10- 2 deg. 

To describe the complete time-space response f(x,z,t), 
one needs to perform a numerical Laplace-Laplace inver- 
sion of the transformed solution f(•,z,s). A discrete trans- 
form pair for Eqs. (6) is made up of a set of sampling points 
(si ,• ) in the two-dimensional transformed domain and a set 
of sampling points (ti,x•) in the time-space domain with a 
functional relationship that connects the two sets. The in- 
verse transform is computed by a Laplace inversion over the 
•'s, for each value ofsi, followed by a Laplace inversion over 
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the Si'S. A similar procedure is used for the direct transforms 
needed for the calculation of E, (•',s) (beam profile) and 
E2 (s) (pulse shape). 

The standard methods 24 for the one-sided Laplace 
transform •',, relate a set of samples from f(s), taken at 
equal intervals along the Bromwich contour, to a set of sam- 
ples from f(t) taken at equally spaced instants in the time 
domain. Among the various schemes in the literature, 24 
Durbin's method appears most appropriate for both direct 
and inverse Laplace transforms. Beskos et al. 25 improved 
the method by taking into account that for damped physical 
systems, both the real and imaginary parts of the trans- 
formed solution should behave smoothly at large si values. 
In this case, one may diminish the number of samples in the 
transformed domain by a factor of 2 or 3 and use an interpo- 
lation technique to evaluatef(s),as si increases. Wilcox and 
Gibson 26 then developed a transform pair whereby the sam- 
pling interval is gradually increased with no need for inter- 
polation and no loss of accuracy. In fact, algorithms based 
on this approach are slower. However, for applications 
where calculation off(si ) is by far the more time-consuming 
operation, use of the Wilcox and Gibson scheme results in 
significant improvement of computational speed. In our 
case, each value f(si ) is obtained after many calculations 
over •'•'s, therefore making this transform pair a good 
choice. 

For the two-sided Laplace transform •,ø• x, we let 
• = 7/+ iv, so that the direct transform can be written 

•-6•x(f(x)} = f(x)er•d • dx = •-(f(x)e r•} (68) 

indicating that the calculation may be accomplished by use 
of a fast Fourier transform (FFT) algorithm. For the in- 
verse transform, one has 

1 fr+ioo_ -- f(g)e - g" dg, (69) 

which, after a change of variables, becomes 

•,o•ff•(•e)}= e - rX f oo _ 2u f( 7/+ iv)e-ivx 8%' 
= e- r•-- •(7/+ iv)}. (70) 

Hence, the inverse transform can also be computed by means 
of a FFT algorithm. Numerical tests indicated that accurate 
results are obtained for values of the arbitrary parameter 7/ 
such that 

-- 3<7/Xm <0 (71) 

for x ranging between -- x,• to x,•. 
Finally, in building our algorithm, we made extensive 

use of Laplace transform shifting properties, associated with 
both the time and space variables t -- x, which provide a high 
degree of efiSciency. 

V. NUMERICAL EXAMPLES 

First, we consider an example which presented prob- 
lems in a recent paper by Bogy and Gracewski. 6 The system 

was "water-silver-nickel-copper" (layers 0 to 3, respective- 
ly) with material properties given in Table I. The study was 
conducted for the reflection coefficient I rsl as a function of 
the incidence angle 0o, for various layer thicknesses. In Fig. 
5, we illustrate our results for the energy coefficients R s, T s, 
Ts, where, starting from bottom, the different curves corre- 
sponding to fd, - 1.6, 3.2, 4.8, 6.4, and 8.0 MHz.mm, re- 
spectively; the frequency f- 4 MHz and the ratio d2/d, - 5 
were kept constant. A detailed discussion concerning loca- 
tion of Lamb and Rayleigh poles for different values of 
d2/d, in the complex •' plane, may be found in Ref. 6. Again, 
we mention that taking into account attenuation, causes 
Rayleigh modes to appear in R s for angles larger than the 
shear critical angle. 

In the paper by Bogy and Gracewski, 6 numerical insta- 
bilities in Irsl occurred forfd, > 3.2 MHz.mm, but the prob- 
lem would have been even more prominent for transmission. 
Using the present formulation, the solution is completely 
stable, therefore allowing study of the resonant mode struc- 
ture in reflection as well as in transmission for much higher 
values offd,. We investigated other examples from the liter- 
ature with equal success. In particular, we were able to ex- 
tend the results from the recent paper by Cervenka and Chal- 
lande 9 that include fluid layers, to values offd much higher 
than 15 MHz. mm, with 0o ranging from 0 all the way to 90 ø. 

As a second application, we consider Gaussian beam 
profiles with sinusoidal temporal excitation. Finite size ef- 
fects may strongly influence wave propagation, leading to 
peculiar properties for bounded beams, such as lateral dis- 
placement of the reflected component, the so-called Schoch 
effect, that may occur near the Rayleigh angle. 27 In the past, 
various schemes were put forth that aimed mainly at describ- 
ing reflection behavior. In cases 6'28 where the usual Gaus- 
sian description, Eq. ( 11 ), was used, beamwidth and beam 
angle effects could be accounted for, but not positioning of 
source, or focusing. In answer to this, Schmidt and Jensen'ø 
suggested modeling a bounded beam by an array of equally 
spaced sources: the position of the array and the number of 
sources would control beamwidth, while phase differences 
between sources would command focusing. The drawback 
here is the large number of adjustable parameters needed to 
represent realistic Gaussian profiles. 

In contrast, our approach, Eqs. ( 12)-(15), involves 
only three parameters. In order to evaluate its effectiveness, 
we examine a simple problem where other models are known 
to fail. A steel plate of thickness d- 1.5 mm and having 
properties given in Table I, is immersed in water, together 
with a constant frequency source,f-- 20 MHz that is located 
Hs -- 2 cm above the steel-water interface and produces a 
Gaussian beam of width 2b -- 1 mm. Similar to the situation 

depicted in Fig. 4, Lamb modes may be excited when the 
beam angle is in the range between longitudinal and shear 
critical angles, Ocs < 0o < Ocs, while Rayleigh behavior oc- 
curs for 0o -- 0R • 31.2 ø. With 0o = 32 ø, Fig. 6 illustrates the 
behavior of the pressure amplitude in the wave at different 
altitudes Ho, above and below the steel-water interface 
Ho --0: starting from the bottom, the curves in Fig. 6(a) 
relate to the incident (negative x values) and reflected (posi- 
tive x values) beams at observation points Ho -- 0, 1, 2, 3, 
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(a) 

0.0 0.2 0.4 0.6 0.8 1.0 

sin 

FIG. 5. Angular spectrum of R e (range 0-1), Tp (range 0-0.5) and T•. 
(range 0-1 ) at 4 MHz using Eqs. (55) for the system "water-silver-nickel- 
copper." Starting from bottom, fd• - 1.6, 3.2, 4.8, 6.4, 8.0 MHz.mm and 
d2/d• = 5. 

(b) 
ß i . ß 

-4 -2 0 2 4 

FIG. 6. Acoustic pressure amplitude for the system "water-steel-water;" 
the source is located H• = 2 cm above the plate and the beam angle is 
0o = 32 ø. Different curves correspond to altitudes Ho = 0, 1, 2, 3, 4 cm, (a) 
above and (b) below the steel plate. The vertical scales in (a) and (b) are in 
the ratio of 500:1. 

and 4 cm, While beginning at the top, the curves of Fig. 6(b) 
refer to the signal transmitted below the plate at Ho --0, 

1, -- 2, -- 3, -- 4 cm. The pressure amplitudes in Fig. 6 
are given in arbitrary units normalized with respect to the 
maximum value for the reflected signal at the steel-water 
interface, Ho -- 0 in Fig. 6 (a); also, the vertical scales in Fig. 
6 (a) and (b) are in the ratio of 500:1. 

As expected, the original beam remains Gaussian-like 
while progressively diverging as the wave propagates away 
from the source. At the steel-water interface, the pressure 
amplitude manifestly departs from a simple Gaussian de- 
scription, indicative of the complex behavior of the stress/ 
strain fields. Although mainly of specular origin, the reflect- 
ed beam retains memory of this behaviour, as manifested by 
the presence of sidelobes and overall complicated shape. The 
same is also true for the case of the transmitted signal, Fig. 
6(b), although its amplitude is very weak. 
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(b) 
i ! 

o 1 g 

FIG. 7. Acoustic pressure amplitude for the system in Fig. 6 with observa- 
tion point on the beam axis at Ho = 2 cm, (a) above and (b) below the 
sample. Starting from bottom, 0o = 28 ø, 30 ø, 32 ø, 34 ø, 36 ø. The vertical scales 
in (a) and (b) are in the ratio of 10:1. 

In order to gain insight into the description of the acous- 
tic fields, we performed a similar study for different beam 
angles. The results are illustrated in Fig. 7 where going up- 
wards, the different traces correspond to 0o = 28 ø, 30 ø, 32 ø, 
34 ø , and 36 ø , respectively and observation points located at 
Ho = 2 cm for the case of Fig. 7 (a) and Ho = -- 2 cm for 
that of Fig. 7 (b). Here, the pressure amplitudes are stated in 
arbitrary units relative to the maximum value of the reflect- 
ed signal for 0o = 28 ø in Fig. 7 (a); also, the scales in Fig. 
7(a) and (b) are in the ratio of 10:1. 

At 0o = 28 ø, one observes oscillations in the transmitted 
signal, Fig. 7 (b), which are suggestive of Lamb modes. Re- 
ciprocally, the Lamb modes also influence the reflected sig- 
nal, Fig. 7 (a), but their contribution is quite small compared 
to specular reflection. As the beam angle increases, the 
Lamb modes become weaker and disappear almost com- 
pletely near the Rayleigh angle. This suggests that the pat- 

tern in the reflected signal, Figs. 6 ( a ) and 7 (a), is associated 
with Rayleigh behavior: near the Rayleigh angle, 0R • 31.2 ø, 
surface waves propagate which leak out energy in the liquid, 
therefore modulating the amplitude of specular reflection. 
Here, however, these effects are much more pronounced and 
they also occur over a much wider range of angles than one 
would normally anticipate. Clearly, the marked features in 
Figs. 6 and 7 are also consequent on the specifications for the 
boundary conditions. In particular, the nulling of the ampli- 
tude, which gives the impression for lateral displacement of 
the beam near 0o = 32 ø (Schoch effect), are characteristic 
for the reflection of spherical (cylindrical in our case) 
waves. In fact, the patterns in Figs. 6 (a) and 7 (a) would be 
further complicated in case of a more highly divergent 
source, due to the additional contribution of the incident 
wave. Finally, one notes there are no signs of instabilities in 
the computation of the transmitted signal, even in the pres- 
ence of evanescent waves when 0o > 32 ø, indicating that our 
algorithm is very robust. 

As a third application, we investigate the time response 
when the continuous sinusoidal excitation is replaced by a 
typical experimental pulse. Here, a source having a width 
2b = 1 mm is located at Hs = 2 cm above the steel-water 
interface and generates a pulse of time duration 50 ns and 
corresponding center frequency 20 MHz. Figure 8(a) re- 
lates to normal incidence when the receiver is placed at 
Ho = --2 cm below the plate, whereas in Fig. 8(b), the 
angle of incidence is 0o = 30 ø and the receiver is positioned 
at Ho = 2 cm above the interface. 

Starting from the top of Fig. 8 (a), the different traces 
correspond to the signal that is measured when the receiver 
is displaced from the center to the right of the propagation 
axis by 6x = 0, 3, and 6 mm. One observes the different ech- 
oes due to reverberation in the plate and also, patterns for 
6x < 0 not shown here, would be symmetrical with respect to 
the propagation axis. For 6x = 0, the time delay between 
echoes, At = 0.52/•s, and the attenuation correspond exact- 
ly to the propagation of longitudinal waves in steel with 
properties in Table I. On departing from the center line, 
6x = 0, beam curvature causes retardation of the echo pat- 
tern and the emergence of shear wave echoes (0.23/•s after 
the longitudinal echoes) through mode conversion. The 
combined effects of beam curvature and Gaussian distribu- 

tion of energy lead to the overall decrease in intensity and 
also to the nonexponential decay of the echo pattern. 

In Fig. 8 (b), the different traces are obtained, starting 
from the top, with the receiver displaced from the propaga- 
tion axis by 6x = -- 6, -- 3, 0, 3, and 6 mm. The arrival time 
for the specularly reflected signal can be calculated simply 
through 

+Ho) 
At o -- , (72) 

C,,o cos 0o 

which yields Ato = 31.2/•s, in good agreement with the nu- 
merical results for 6x = 0. Bearing in mind the broadband 
nature of the acoustic pulse, the results in Fig. 8 (b) simply 
reflect the features for wave interaction described in Fig. 7. 
Also, with reference to Fig. 6(a), it is clear that the maxi- 
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time (us) 
FIG. 8. Pressure wave response of the system in Fig. 7 for deviations from 
beam axis t•x: (a) transmission for 8o = 0 ø with t•x -- 0, 3, and 6 mm and 
(b) reflection for 8o -- 30 ø with t•x --- -- 6, - 3, 0, 3, and 6 min. 

mum amplitude is not necessarily at •Sx = 0, and that the 
relationship between time, amplitude and •Sx is not straight- 
forward. While the signal is weak near •Sx = 3 mm, it in- 
creases at •Sx = 6 mm due to the added contribution of leaky 
Rayleigh waves. This may be confirmed by a simple calcula- 
tion of the arrival time 

AtR = Ato -3- (Sx/cR, (73) 

where cR = cvo/sin 0R, leading to AtR = 33.3 ps, in good 
agreement with the result in Fig. 8(b). 

Often, experimental problems are fraught with effects 
from diffraction that are not exactly tractable. When this 
occurs, it may be helpful to use transducers with Gaussian 
beam profiles which help minimize these difficulties. This by 
no means suppresses the need for close control of experimen- 
tal conditions, as demonstrated by the results in Figs. 6, 7, 

and 8. In this case, however, the details for wave propagation 
may be interpreted to a high degree of accuracy with the help 
of a numerical model. 

In a final illustration, we examine questions related to 
viscoelasticity and interfacial properties in view of applica- 
tions to the characterization of adhesion. For this, we con- 
sider a multilayered material that is relevant to industrial 
uses, such as "steel-polymer ( polypropylene )-steel." Here, 
we conduct a numerical ultrasonic experiment where the 
sample and transducer are immersed in water and we com- 
pute the frequency dependence for the reflection coefficient 
of energy R e in the case of a plane wave at normal incidence. 
In our example, the thickness, ds = 0.4 mm, is the same for 
both steel plates, while that for the polymer is d e = 0.1 mm. 
The properties for water and steel are those in Table I. On 
the other hand, we performed ultrasonic measurements on a 
bulk sample of polypropylene, and found that the results 
obeyed the relaxation functions in Eqs. (22) with p = 926 
kg/m 3, Ao = 1.8 GPa, Ao•/Ao = 1.96, Po = 0.0005 GPa, 
P oo/Po = 4000. We observed evidence for a wide distribu- 
tion of relaxation times that changed rapidly, •'e • 105 ns to 
•'e • 10- 2 ns in the temperature range from 0 øC to 150 øC, 
and near T = 20 øC, we found r• 1 and •'e • 500 ns. 

First, we perform the calculations under the usual as- 
sumption of boundary conditions for rigid bonding. The re- 
sults for R e (from 0 to 1 between tick marks) in the range 
from f= 0 to f= 40 MHz are shown in Fig. 9 (a) where, 
starting from the bottom, the different traces correspond to 
•'e = 0.1, 1, 10, 100, 103, and 104 ns, respectively. Overall, 
one sees sharp minimums in R e located at equally spaced 
frequencies, fn +, --fn = 7.2 MHz, and these coincide with 
resonant conditions in the steel plate, f• = (n/2) Ces/d s, 
Ces = 5760 m/s being longitudinal velocity in steel. Also, one 
notices the occurrence of a low-frequency feature, near 
fo = 0.5 MHz, which may be interpreted as an eigenmode 
for the lumped oscillator. In the lower trace, r e = 0.1 ns, the 
resonance at f• = 7.2 MHz corresponds to the limit situa- 
tion cor e ,• 1, where the polymer is liquidlike and the attenu- 
ation is small. In turn, this condition promotes mode cou- 
pling between the different layers, as manifested by the 
presence of a triple-dip structure nearf•. As cor e approaches 
1, the attenuation increases rapidly and the satellite dips be- 
come smaller, until eventually only the central feature re- 
mains for the resonance of the steel plate. Concurrently, the 
stiffness in the polymer increases so that the satellites grow 
deeper and shift slightly to higher frequencies. For r e = 10 
ns and frequencies above f• = 7.2 MHz, cor e • 1 prevails, so 
the pattern approaches that of a single steel layer immersed 
in water, except for the low-frequency feature where cor e ,• 1. 
Upon increasing r e , the attenuation decreases and the poly- 
mer becomes solidlike. In this case, the resonance splitting is 
even more marked because of the stiffer coupling between 
the layers. 

In our example, the triplet feature for resonance split- 
ting constitutes the most obvious indication of coupling be- 
tween layers in the sample. Hence, for purposes of nondes- 
tructive evaluation, one could test for the presence of this 
feature through measurements at the appropriate tempera- 
ture and frequency. However useful, such a test is only spec- 
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$• = ( ,'t i q- 21u • ) / d • , 

(74) 

This conclusion is in line with a more analytical approach. 2• 
Indeed, it turns out that, if the intermediate layer is a small 
perturbation, the elements of the transfer matrix [,4• ] may 
be written in a form that involves only four parameters' S,, 
S, and the inertia terms m, and m•,. Then, unless the inter- 
face layer is very heavy, m• and m e may be safely neglected 
so that S• and S, are the relevant variables in the problem. 
This is tantamount to the more intuitive idea of an effective 

viscoelastic spring S -- nk where, in a parallel arrangement, 
n is the number of springs per unit cross section and k the 
complex spring constant. In reality, accommodation of ma- 
terial properties mostly concerns the polymer, therefore we 
found it convenient to describe our results in terms of S, and 
S• normalized with respect to the properties of the bulk poly- 
mer 

0 10 20 30 40 

freq (mHz) 
FIG. 9. Frequency spectrum of Rp for a "metal-polymer-metal" sample 
under water immersion. (a) Rigid bonding and starting from the bottom 
7'p • 0.1, 1, 10, 100, 103, 104 ns. (b) Boundary layer model with r• ---- 500ns 
and starting from the bottom •, ---- 0.2, 1, 2, 5, 20, 100. 

ulative since the results in Fig. 9 (a) presuppose rigid bond- 
ing. Actually, this assumption is too stringent and needs to 
be relaxed. A more realistic model should account for the 

requirement that the different structures for the metal and 
the polymer accommodate one another. 

As mentioned in Sec. I, the interface between materials 
may be modeled as an additional viscoelastic layer charac- 
terized by its thickness d• and moduli 2. i and •ti. We per- 
formed a great number of simulations that showed that, 
whenever di was smaller than the acoustic wavelength, the 
thickness and moduli were not independent parameters. In- 
stead, the data could be scaled over a wide range, which 
produced a unique description in terms of the normal and 
transverse specific stiffness coefficients 

S n -• Sndp/(,,•, p .-JF 2[.•p ), 
(75) 

With r e = 500 ns for the bulk polymer at T = 20 øC, 
Fig. 9 (b) shows the behaviour of R e for different values of 
S•, in the case of normal incidence: starting from the bottom, 
$, = 0.2, 1, 2, 5, 20, and 100. The smallest value, $• = 0.2, 
represents a very weak interface; in fact, the pattern is simi- 
lar to that for a single steel plate with air backing. For 
S, = 1, there appears a small feature near 5.5 MHz, that 
shifts to higher frequency for larger values of S•, and even- 
tually contributes to the resonances at fl = 7.2 MHz 
(S• -- 2) and f2 = 14.4 MHz (S• > 20). Although this pat- 
tern seems to repeat itself with increasing frequency, we 
found no evidence of a true periodicity. Finally, when 
S, > 100, the behavior approaches that in Fig. 9(a) near 
r e = 103 ns, corresponding to rigid bonding. 

Compared to the rigid bonding approach, the interme- 
diate layer model leads to a more quantitative and realistic 
characterization of the forces between the different materi- 

als. Indeed, what may be considered as a "good" bond for a 
specific usage may well turn out to be a "bad" bond for other 
applications. Therefore, the model provides an interesting 
tool for the nondestructive evaluation of adhesion. 

Vl. CONCLUSION 

The transfer matrix approach has been improved to pro- 
vide a complete description for the propagation of ultrasonic 
waves in multilayered media. Generalized expressions for 
reflection and transmission coefficients have been derived 

which were solved numerically. Several computational 
schemes were examined with respect to numerical stability 
and a different method was presented that circumvents these 
difficulties. By transforming and working in the Laplace do- 
main, the scheme was made to handle general relaxation 
functions for viscoelastic behaviour of solids and liquids 
alike. The response function for arbitrary beam angles, beam 
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profiles, and pulse shapes could be obtained through nu- 
merical transform inversion. A scenario was suggested for 
actual implementation on a computer, leading to a very ro- 
bust and efficient algorithm. Comparative studies based on 
case examples from the literature served to validate our ap- 
proach and confirmed its higher degree of reliability. Other 
examples demonstrated that the scheme provided a com- 
plete representation for the frequency, time, and spatial de- 
pendence of the acoustic field. Ultimately, boundary condi- 
tions for rigid bonding were relaxed and it was shown that 
adhesion properties between different materials could be 
modeled through scaling laws. 

Because of its robustness, the present scheme is an op- 
portunity for numerous applications. These include plan- 
ning of experiments for the characterization of materials and 
design of techniques and strategies for nondestructive test- 
ing. Acoustic microscopy could also benefit from accurate 
modeling, particularly with regard to measurements on bio- 
logical specimens. Finally, the question of relaxations in 
confined geometries is a major issue, mainly in relation to 
adhesion, and this will be the subject of forthcoming papers. 
In addition, work is ongoing in order to extend the model for 
applications in anisotropic media. 

.•. P PEfID ! X 

Defining the quantities 

= = 
ca = cosh( -- hd), ck = cosh( - kd), 

sn = • /h sinh( -hd), s• = • /k sinh( - kd), 

r h = (h/•)2, r• = (k/•)2, 

the matrix [ B m ] is given by 

B•_js_ i 
B• = (1 -- v)c• + VCh, 

B•2 = vs•r• -- (1 -- V)Sh, 

B•3 = (c• -- C h )/•, 

B•4 : (S h + s•r• )/•, 

B21: (l -- V)S k -- VShrh, 

B22 = (l - v)c h + VCk, 

B23 = (s• + s hr h )/•, 

B3• = •v( 1 -- v) ( c• -- Ch ), 

B32 = • [ ( 1 -- v) 2s h + •s• r• ], 

and for the matrix [ Dm ] = [Bm ] •, 
D m --D m 7-i 7-i • ij• 

D• = ChC• + 2V( 1 -- V) (1 -- ChC•) 

+ [ (1 - v) 2 + •rhr • ]ShSk, 
Di2 = ( ChS• + C•Sh rh ) /•, 

D13 =D14= [(1--2V)(1--ChC•) 

-- ( 1 -- V -- vr h r• )ShS• ]/•, 

D• = -- (ChSkr k q- Ck$ h 

D•6 = [2( 1 -- ChC k ) -- $hSk (1 + rhr •) ]/•2, 
D21 = •[ (1 -- V)2CkSh + •ChSkr • ], 
D22 = C h C k, 

D23 = D24 = •ChS•r • -- (1 -- •)%Sh, 

D25 • _s hskrk, 

O31 = O41 = •v( i -- v) ( 1 - 2v) ( 1 - ChC• ) 

+ •[ (1 - v) 3 - ½rhr • ]ShSk, 
D3• = D4• = ( 1 -- V)ChS• -- VC•Sh rh, 

D34 =D43 = D33 -- 1 =D• -- D•, 

Ds• = -- •(•C•Shrh + (1 -- V)•ChS• ), 

Ds• = -- ShS•rh, 

D6• = •[2•(1 -- v)•(1 -- Ch%) 

- (½rhr• + (1 -- V)4)ShS• ]. 
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